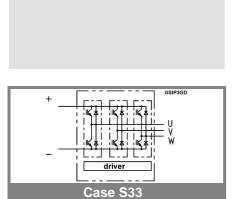

SKiiP 613GD061-3DUL

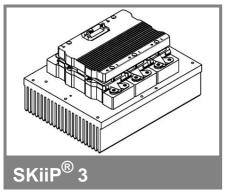

6-pack-integrated intelligent power system

Power section SKiiP 613GD061-3DUL

Preliminary Data

Features

- SKiiP technology inside
- · Low loss IGBTs
- CAL diode technology
- Integrated current sensor
- Integrated temperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP[®] 3 System)
- IEC 68T.1 (climate) 40/125/56 (SKiiP[®] 3 power section)
- UL recognized file no. E 63 532 (SKiiP[®] 3 power section)
- with assembly of suitable MKP capacitor per terminal (SEMIKRON type is recommended)



Absolute	Maximum Ratings T _s	= 25 °C, unless otherwise specified			
Symbol	Conditions	Values	Units		
IGBT					
V _{CES} V _{CC} 1)		600	V		
V _{CC} 1)	Operating DC link voltage	400	V		
V_{GES}		± 20	V		
I _C	T _s = 25 (70) °C	600 (450)	Α		
Inverse diode					
I _F = - I _C	T _s = 25 (70) °C	560 (420)	Α		
I _{FSM}	$T_{j} = 150 ^{\circ}\text{C}, t_{p} = 10 \text{ms}; \text{sin}$	6000	Α		
I ² t (Diode)	Diode, T _j = 150 °C, 10 ms	180	kA²s		
T _j , (T _{stg})		- 40 + 150 (125)	°C		
V _{isol}	rms, AC, 1 min	2500	V		
I _{AC-terminal}	per AC terminal, rms, T _s = 70 °C,	400	Α		
	T _{terminal} < 115 °C				

Characteristics				T_s = 25 °C, unless otherwise specified				
Symbol Conditions			min.	typ.	max.	Units		
IGBT								
V _{CEsat}	I _C = 300 measured a	A, T _j = 25 (1 at terminal	25) °C;			1,5 (1,6)	1,8	V
V_{CEO}		125) °C; at te				0,8 (0,7)	1 (0,9)	V
r_{CE}		125) °C; at te				2,4 (3,1)	2,7 (3,4)	mΩ
I _{CES}	$V_{GE} = 0$ $T_i = 25$ (V, V _{CE} = V _{CE} 125) °C	ES'			1,2 (36)		mA
$E_{on} + E_{off}$	$I_{\rm C}^{\rm J}$ = 300 A, $V_{\rm CC}$ = 300 V					27		mJ
	$T_j = 125$	°C, V _{CC} = 40	00 V			39		mJ
R _{CC+EE}	terminal	chip, T _i = 25	°C			mΩ		
L _{CE}	top, botto	om				12		nΗ
C _{CHC}	per phas	se, AC-side				1,7		nF
Inverse (diode							
$V_F = V_{EC}$	I _F = 300 measured a	A, T _j = 25 (1 at terminal	25) °C			1,3 (1,2)	1,5	V
V_{TO}	T _i = 25 (125) °C				0,8 (0,6)	1 (0,8)	V
r _T	$T_i = 25$ (1,5 (1,9)	1,7 (2)	mΩ
E _{rr}	$I_{\rm C} = 300$	A, $V_{CC} = 30$	0 V			5		mJ
	$T_j = 125$	°C, V _{CC} = 40	00 V			6		mJ
Mechani	cal data	1						
M_{dc}		inals, SI Unit			6		8	Nm
M _{ac}		inals, SI Unit			13		15	Nm
W	SKiiP® 3 System w/o heat sink				2,4		kg	
W	heat sink					7,5		kg
Thermal characteristics (PX16 heat sink with fan SKF16B-230-1); "s" reference to heat sink; "r" reference to built-in temperature sensor (acc.IEC 60747-15)								
$R_{th(j-s)I}$	per IGB1	Γ					0,059	K/W
R _{th(j-s)D}	per diode	е					0,115	K/W
Z _{th}	R _i (mK/W) (max. values)							
	1	2	3	4	1	2	3	4
$Z_{th(j-r)I}$	10,2	28,8	21	0	363	0,18	0,04	1
$Z_{th(j-r)D}$	36	36	54	60	30	5	0,25	0,04
$Z_{th(r-a)}$	2,1	20	5,5	1,4	210	85	11	0,4

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

SKiiP 613GD061-3DUL

Absolute Maximum Ratings					
Symbol	Conditions	Values	Units		
V_{S2}	unstabilized 24 V power supply	30	V		
V_{i}	input signal voltage (high)	15 + 0,3	V		
dv/dt	secondary to primary side	75	kV/μs		
V_{isollO}	input / output (AC, rms, 2 s)	2500	V		
V _{isolPD}	partial discharge extinction voltage, rms, $Q_{PD} \le 10 \text{ pC}$;	960	V		
V _{isol12}	output 1 / output 2 (AC, rms, 2 s)	1500	V		
f	switching frequency	20	kHz		
$T_{op} (T_{stg})$	operating / storage temperature	- 40 + 85	°C		

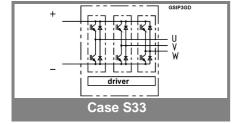
6-pack-integrated intelligent power system

6-pack integrated gate driver SKiiP 613GD061-3DUL

Preliminary Data

Gate driver features

- · CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and


DC-bus voltage (option)

- Short circuit protection
- · Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- Interlock of top/bottom switch
- Isolation by transformers
- Fibre optic interface (option for GB-types only)
- IEC 68T.1 (climate) 40/85/56 (SKiiP[®] 3 gate driver)

Characte	ristics	(T _a =			= 25 °C)
Symbol	Conditions	min.	typ.	max.	Units
V_{S2}	supply voltage non stabilized	13	24	27	V
I _{S2}	V _{S2} = 24 V	375+30*f/kHz+0,00111*(I _{AC} /A) ²			mA
V _{iT+}	input threshold voltage (High)	11,2			V
V_{iT-}	input threshold voltage (Low)			5,4	V
R _{IN}	input resistance		10		kΩ
C _{IN}	input capacitance		1		nF
t _{d(on)IO}	input-output turn-on propagation time		1,1		μs
t _{d(off)IO}	input-output turn-off propagation time		1,1		μs
tpERRRESET	error memory reset time		9		μs
t _{TD}	top / bottom switch interlock time		3,3		μs
I _{analogOUT}	max. 5 mA; 8 V corresponds to 15 V supply voltage for external components		600		Α
I _{s1out}	max. load current			50	mA
I _{TRIPSC}	over current trip level (I _{analog} OUT = 10 V)		750		Α
T_tp	over temperature protection	110		120	°C
UDCTRIP	U _{DC} -protection (U _{analog OUT} = 9 V); (option for GB type)		400		V

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

